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Overview

Overview Provide an algorithm (Me-LoNS) to perform Causal Discovery/Learning under

reasonably weak assumptions.
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Problem Setting

Our setting for Causal Discovery/Learning:

1 Purely observational, not accounting for interventional data.

2 Constraint-based, assume access to a conditional independence oracle.
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Under some assumptions, the output G(P) is the ‘same’ as the true causal graph. The most common

is the faithfulness assumption.

Graphical separations in G0 ⇐⇒ Conditional independencies in P

Too strong! May sometimes not hold empirically :(

Our assumptions

Assumption relates observational distribution P and true causal graph G0.

1 P is adjacency faithful to G0.

i − j ∈ G0 ⇐⇒ i ⊥⊥ j |C for some C
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2 P is v-ordered upward stable (V-OUS) and collider-stable to G0.

i −→ k ←− j ∈ G0⇒ i ⊥⊥ j |C for some C s.t. k ̸∈ C

non-collider i ∼ k ∼ j ∈ G0⇒ (i ⊥⊥ j |C ⇒ i ⊥⊥ j |C ∪ k for all C)
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3 P is modified V-stable.
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If can't be resolved

If can be resolved by:

1. Acyclicity 2. Directedness

Modified V-stable! 
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Not modified V-stable... 

From P, create skeleton with orientation assignment²

Modified V-stable Localised Natural Structure Learning (Me-LoNS)

A modification of the (C)PC algorithm via replacing the oreintation and propagation step with the

following.

Orientation step replaced with²:

i k j

∃C (i ⊥⊥ j |C, i ̸ ⊥⊥ j |C ∪ k)

∀C (i ⊥⊥ j |C ⇒ k ∈ C)

otherwise

collider

non-collider

unassigned

Propagation step replaced with Mixed Integer Linear Programming to solve for DAG

Theorem

From observational distribution P and true causal graph G0:

Me-LoNS return G0 (up to MEC)

⇕
P satisfies our assumptions with G0.

How do our assumptions compare with existing causal discovery assumptions?

Our assumptions Restricted faithfulness (*)

E1

E2

G = { Markovian graphs to P with the least number of edges}

P is SMR to G0 if:

1 G0 ∈ G

2 all G in G are Markov equivalent.

SMR (**)

An alternative to some existing causal discovery approaches! :)

How reasonable are our assumptions?

How strong is:

Collider-stability?

Pairwise Markov property⇒ Collider stability

V-OUS?

1 Composition (e.g. Gaussians)

2 Conditional exchangability on non-colliders
⇒ V-OUS

Note:

Conditional exchangability here refers to the exchangability of the conditional distribution

Modiifed V-stability?

Singleton-transitivity (e.g. Gaussians)⇒ Modified V-stability

Weaker than common assumptions! :)

Simulation Comparisons

Sample from SCM with graph G0 x10,000

Run Me-LoNS + comparison algorithm on samples

Check if Me-LoNS and comparison algorithm return G0

Repeat x100
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