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Overview

Overview Provide an algorithm (Me-LoNS) to perform Causal Discovery/Learning under
reasonably weak assumptions.
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Problem Setting

Our setting for Causal Discovery/Learning:
Purely observational, not accounting for interventional data.
Constraint-based, assume access to a conditional independence oracle.
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Observational distribution P

Under some assumptions, the output G(P) is the ‘same’ as the true causal graph. The most common
IS the faithfulness assumption.

Graphical separationsin Gy <=  Conditional independencies in P

Too strong! May sometimes not hold empirically Z(

Our assumptions

Assumption relates observational distribution P and true causal graph Gy.
P is adjacency faithful to Gy.
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P is modified V-stable.

From P, create skeleton with orientation assignment!
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Modified V-stable!

1. Acyclicity
Non-Collider

2. Directedness
Collider

Modified V-stable Localised Natural Structure Learning (Me-LoNS)

A modification of the (C)PC algorithm via replacing the oreintation and propagation step with the
following.
Orientation step replaced with':
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Propagation step replaced with Mixed Integer Linear Programming to solve for DAG

Theorem

From observational distribution P and true causal graph Gy:

Me-LoNS return Gy (up to MEC)
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P satisfies our assumptions with Gp.

How do our assumptions compare with existing causal discovery assumptions?

Our assumptions Restricted faithfulness (*)

G = { Markovian graphs to P with the least number of edges}
P is SMR to G if:

Go eG
all Gin G are Markov equivalent.

An alternative to some existing causal discovery approaches! :)

How reasonable are our assumptions?

How strong is:
Collider-stability?
Pairwise Markov property = Collider stability
V-OUS?
Composition (e.g. Gaussians)

= i
Conditional exchangability on non-colliders V-OUS

Note:
Conditional exchangability here refers to the exchangability of the conditional distribution

Modiifed V-stability?
Singleton-transitivity (e.g. Gaussians) = Modified V-stability

Weaker than common assumptions! :)

Simulation Comparisons

Sample from SCM with graph Gp x10,000

i

Run Me-LoNS + comparison algorithm on samples Repeat x100
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Check if Me-LoNS and comparison algorithm return Gy
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Non-Collider a Non-CoIIider e Unassigned

Unassigned

_____________________________________________________________________________________________

If can't be resolved Collider

Not modified V-stable...
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