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Motivation
In graphical causal inference,

Graph (e.g. DAG)Causal Model (e.g. SCMs)

Estimate Causal Effects (e.g. ATE)

Represented by

Interpreted as

Graphical Magic

Specifically:

Graphical Model Causal Interpretation

Directed Acyclic Graphs (DAGs) Structural Causal Models (SCMs) with inde-
pendent noise
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X1 = f1(ϵ1)

X2 = f2(X1, ϵ2)

X3 = f3(X1,X2, ϵ3) ϵi i.i.d.

Chain Graphs (CGs) Nested Gibbs Dynamics (NGs) with indepen-
dent noise (Richardson and Lauritzen 2002)
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X1 = f1(ϵ1) X2,3 = f2,3(X1, ϵ2,3) where
ϵ1 ⊥⊥ ϵ2,3

f1(ϵ1) ∼ J(X1) f2,3(X1, ϵ2,3) ∼ J(X2,3 |X1)

J(X1), J(X2,3 |X1) equilibrium of Gibbs dynamics

Ancestral Graphs (AGs) Structural Causal Models with potentially de-
pendent noise (Richardson and Spirtes 2002,
Sadeghi and Soo 2022)
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X1 = f1(ϵ1)

X2 = f2(ϵ2)

X3 = f3(X2, ϵ3) where ϵi ⊥⊥ ϵj if i ̸↔ j

DAGs

CGs

Anterial Graphs (Lauritzen and
Sadeghi 2018)

Not allowed ×

1
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Semi-directed cycle

2

1

2 3

4

Semi-directed path
connecting bidirected edges

We have graphical magic for
this!

AGs

But what is the causal interpretation??

Interpretations
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Chain-connected anterial graph

SCM interpretation

X1 = f1(ϵ1) X2,3 = f2,3(X1, ϵ2,3) X4 = f4(ϵ4)

ϵ1 ⊥⊥ ϵ2,3, ϵ1 ⊥⊥ ϵ4

f1(ϵ1) ∼ J(X1) f2,3(X1, ϵ2,3) ∼ J(X2,3 |X1) f4(ϵ4) ∼ J(X4)

J(X1), J(X2,3 |X1), J(X4) equilibrium of Gibbs dynamics

ϵ2,3 and ϵ4 are allowed to be dependent!

Theorem

Let distribution P be induced from the SCM-interpretation of chain-connected anterial
graph G.
If P is a compositional graphoid**, then P is Markovian to G.

Joint Dynamical Model (JDM) interpretation
JDM interpretation

mt = mt−1 + 1 mod |V |

X t
V\mt

= X t−1
V\mt

X t
mt

= hmt(X
t−1
ne({mt})

,X t
pa({mt})

, ϵt
τ(mt)

)

NG (Richardson and Lauritzen 2002)

mt = mt−1 + 1 mod |τ|

X t
V\mt

= X t−1
V\mt

X t
mt

= hmt(X
t−1
ne({mt})

,Xpa({mt}), ϵ
t
τ)

Updated jointly using
current values of parents vs

NG which updates chain component in order

ϵ2,3 and ϵ4
are allowed to be dependent!

PROBLEM: equilibrium may not exist
SOLUTION: consider the equilibrium of convergent subsequences in time

Theorem

Let distribution P be induced from the equilibrium of some convergent subsequence
from the JDM-interpretation of chain-connected anterial graph G.
Under some conditions*, if P is a compositional graphoid**, then P is Markovian to G.

Conditions* are satisfied when the JDM interpretation
1 takes discrete values, or
2 satisfies time-equicontinuity

Compositional graphoids** are satisfied by distributions such that
1 full support, and
2 pairwise independence implies joint independence

e.g. Gaussians.

Both are equivalent graphically, (manipulated in the same way).

Chain-connected anterial graphs
Furthermore, restrict anterial graphs via the chain-connectedness condition.
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⇒
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Still contains DAGs, CGs, and AGs!

Interventions
Graphically:
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Intervene on 3
4

2 3 1

From the interpretations:
SCM interpretation

X1 = f1(ϵ1) X2 = f ′2(ϵ2,3) X3 = x3 X4 = f4(ϵ4)

f1(ϵ1) ∼ J(X1) f ′2(ϵ2,3) ∼ Jdo(X2,3 |X1) f4(ϵ4) ∼ J(X4)

Jdo(X2,3 |X1) equilibrium of intervened Gibbs dynamics

JDM interpretation

P JDM
equilibrium distribution of

Pdo Intervened JDM
equilibrium distribution of

intervene

Single-World Interpretation
Given a DAG G and intervention targets C, conditional independence between pre and post-
intervened variables can be represented via a single-world intervention graph (SWIG) ϕ(G;C)
obtained after transforming said DAG (Richardson and Robins 2013).
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Post-intervened

Single World Anterial Intervention Graph (SWAIG)Pre-intervened graph

What ϕ does
If in G Then in ϕ(G;C)

i → j and i ∈ τ(C) delete i → j , add i(C) → j
i − j and i ∈ C, j ̸∈ C add i(C) → j(C)
j → i and i ∈ τ(C)\C add j → i(C)
i − j and i , j ∈ τ(C)\C add i(C) − j(C)
i ↔ j and i ∈ τ(C)\C add i(C) ↔ j

i ↔ j and i , j ∈ τ(C)\C add i(C) ↔ j(C)
i ∈ τ(C) and j ∈ τ(i)\C add j(C) ↔ j and j(C) ↔ i

SWIG


