Causal Interpretations of Anterial Graphs

Kai Teh, Kayvan Sadeghi, Terry Soo

Department of Statistical Science, University College London

Interpretations

Chain-connected anterial graph

SCM interpretation

$$\begin{aligned} X_1 &= f_1(\varepsilon_1) \qquad X_{2,3} = f_{2,3}(X_1, \varepsilon_{2,3}) \qquad X_4 = f_4(\varepsilon_4) \\ & \varepsilon_1 \perp \\ \varepsilon_{2,3}, \qquad \varepsilon_1 \perp \\ \varepsilon_{2,3}, \qquad \varepsilon_1 \perp \\ \varepsilon_{4} \\ \varepsilon_{4}$$

 $\epsilon_{2,3}$ and ϵ_4 are allowed to be dependent!

Theorem

Let distribution *P* be induced from the SCM-interpretation of chain-connected anterial graph G.

If *P* is a *compositional graphoid*^{**}, then *P* is Markovian to \mathcal{G} .

Joint Dynamical Model (JDM) interpretation

JDM interpretation

NG (Richardson and Lauritzen 2002)

$$m_{t} = m_{t-1} + 1 \mod |\mathbf{V}| \qquad m_{t} = m_{t-1} + 1 \mod |\tau|$$

$$\sum_{m_{t}} X_{V \setminus m_{t}}^{t-1} = h_{m_{t}}(X_{ne(\{m_{t}\})}^{t-1}, X_{pa(\{m_{t}\})}^{t}, \varepsilon_{\tau(m_{t})}^{t})) \qquad X_{m_{t}}^{t} = h_{m_{t}}(X_{ne(\{m_{t}\})}^{t-1}, X_{pa(\{m_{t}\})}, \varepsilon_{\tau}^{t}))$$

$$\sum_{e_{2,3} \text{ and } e_{4}} \sum_{e_{2,3} \text{ an$$

PROBLEM: equilibrium may not exist **SOLUTION**: consider the equilibrium of convergent subsequences in time

Theorem

Let distribution *P* be induced from the equilibrium of some convergent subsequence from the JDM-interpretation of chain-connected anterial graph \mathcal{G} . Under some *conditions*^{*}, if *P* is a *compositional graphoid*^{**}, then *P* is Markovian to \mathcal{G} .

Conditions* are satisfied when the JDM interpretation

- 1 takes discrete values, or
- 2 satisfies time-equicontinuity
- Compositional graphoids** are satisfied by distributions such that
- 1 full support, and
- 2 pairwise independence implies joint independence
- e.g. Gaussians.

Both are equivalent graphically, (manipulated in the same way).

Chain-connected anterial graphs Furthermore, restrict anterial graphs via the chain-connectedness condition. \Rightarrow Interventions Graphically: 2 - - 3 ← - 1 From the interpretations: SCM interpretation JDM interpretation equilibrium distribution of **D**do **Single-World Interpretation**

SWIG

Still contains DAGs, CGs, and AGs!

Given a DAG \mathcal{G} and intervention targets C, conditional independence between pre and postintervened variables can be represented via a single-world intervention graph (SWIG) $\phi(\mathfrak{G}; C)$ obtained after transforming said DAG (Richardson and Robins 2013).

Pre-intervened graph Single World Anterial Intervention Graph (SWAIG)

What ϕ does	
If in ${\mathcal G}$	Then in $\phi(\mathfrak{G}; C)$
$i \rightarrow j$ and $i \in \tau(C)$	delete $i \rightarrow j$, add $i(C) \rightarrow j$
$-j$ and $i \in C$, $j \notin C$	add $i(C) \rightarrow j(C)$
$ ightarrow i$ and $i \in \tau(\mathcal{C}) ackslash \mathcal{C}$	add $j \rightarrow i(C)$
$-j$ and $i,j\in au(\mathcal{C})ackslash\mathcal{C}$	add $i(C) - j(C)$
\leftrightarrow <i>j</i> and <i>i</i> $\in \tau(C) \setminus C$	add $i(C) \leftrightarrow j$
$ ightarrow j$ and $i, j \in \tau(C) ackslash C$	add $i(C) \leftrightarrow j(C)$
$\tau(C)$ and $j \in \tau(i) \setminus C$	add $j(C) \leftrightarrow j$ and $j(C) \leftrightarrow i$