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Abstract

By representing any constraint-based causal learning algorithm via a placeholder property, we
decompose the consistency condition into a part relating the distribution and true causal graph
and a part that depends solely on the distribution. This provides a general framework to obtain
consistency conditions for causal learning, from which we:

1 Show that the Sparsest Markov Representation (SMR) condition is the weakest amongst
existing notions of minimality.

2 Provide exact consistency conditions for the PC algorithm, which are then related to some
existing conditions.

3 Derive an algorithm that works beyond faithfulness under different conditions from the
Sparsest Permutation algorithm.
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Problem Setting and Objective

The setting and assumptions are as follows:
1 Purely observational setting, not accounting for interventional data.
2 Constraint-based, assume access to a conditional independence oracle.
3 Graph-based, assume P is generated by a true causal graph G0.

True causal graph, G0 Observational distribution, P

Output graph, G(P)

generates,
with assumptions

Algorithm
Markov equivalent to

The algorithm is consistent if the output G(P) is the ‘same’ as the true causal graph.
The most common generative assumption is the faithfulness assumption.

Faithfulness is a strong assumption, and there have been works in causal learning beyond
faithfulness, such as:

1 Sparsest Permutation (SP) algorithm.
2 Natural structure learning algorithm.

Objective Provide a general framework to study consistency conditions in causal learning.

Framework

A(P,G0) = ⊤ and UA(P) = ⊤ ⇒ algorithm s.t. A(P,G(P)) = ⊤ is consistent.

A(P,G) = ⊤ - P satisfies property A w.r.t. graph G.
For example, if A is the faithfulness assumption, A(P,G) = ⊤ can be read as P is faithful to
G.
UA(P) = ⊤ - P is A-unique:

All graphs G s.t. A(P,G) = ⊤ are Markov equivalent.
! Reverse implication holds if property A is a class property:

For G1 Markov equivalent to G2, A(P,G1) = ⊤ ⇐⇒ A(P,G2) = ⊤

Interpretation

Property A - Generative assumptions
A and UA - Consistency conditions

Examples

A(P,G) = ⊤ A(P,G) = ⊤ and UA(P) = ⊤
P is faithful to G P is faithful to G
G is the sparsest Markov graph to P P satisfies the SMR assumption w.r.t. G
P is Markovian to G G is complete and P is not Markovian to any subgraph

In general: A(P,G) = ⊤ ⇒ B(P,G) = ⊤, does not imply:

⇒
A(P,G) = ⊤ and UA(P) = ⊤ or B(P,G) = ⊤ and UB(P) = ⊤

⇐

SMR is ‘best’ amongst Minimality

For P and G: denote
M1(P,G) = ⊤ if P is minimally Markovian w.r.t. G.
M2(P,G) = ⊤ if G is the sparsest Markov graph of P.
M3(P,G) = ⊤ if G is P-minimal w.r.t. P.
M4(P,G) = ⊤ if P is causally minimal w.r.t. G.

Then we have:

M1

⇓
M2 ⇒ M3 ⇒ M4

M1 and UM1

⇓
M2 and UM2 (SMR) ⇐ M3 and UM3 ⇐ M4 and UM4

Results from literature Obtained from framework

Exact Consistency Conditions for PC

Depending on the computational implementation, PC may use different orientation rules:

i k j

∀/∃ C, i ⊥⊥ j |C, k ∈ C

∀/∃ C, i ⊥⊥ j |C, k ̸∈ C

non-collider

collider

with different combinations of the quantifiers for the orientation rule. Different orientation rule
have a different corresponding property V:

Orientation rule V(P,G(P)) = ⊤
Collider Non-collider Collider Non-collider
∃ ∀ ∀ ∃
∀ ∃ ∃ ∀
∃ ∃ ∀ ∀

From the framework, we obtain:

V(P,G0) = ⊤ ⇐⇒ PC using the corresponding orientation rule is consistent

Property A being V-OUS and collider-stable

A(P,G) = ⊤ if:
1 P is adjacency faithful to G.
2 P is V-OUS and collider-stable w.r.t. G:

V-OUS

non-collider i − k − j ⇒ ∀C, i ⊥⊥ j |C ⇒ i ⊥⊥ j |C ∪ k

Collider-stable

collider i − k − j ⇒ ∃C, k /∈ C, i ⊥⊥ j |C

We can see that A and UA:
1 neither implies or is implied by the SMR assumption
2 strictly weaker than restricted faithfulness.

Me-LoNS Algorithm

Modified V-stable Localised Natural Structure Learning algorithm:
1 Construct the skeleton

i j
∃C, i ⊥⊥ j |C

i j

2 Orient the v-configurations

i k j

∃C, i ⊥⊥ j |C, i ̸ ⊥⊥ j |C ∪ k

∀C, i ⊥⊥ j |C, k ∈ C

otherwise

collider

non-collider

unassigned

3 Solve for DAG

Simulation Comparisons

The setting for our simulations are as follows:
We obtain 10,0000 samples from each SCM 100 times.
We then implement Me-LoNS using Python package causal-learn.

Comparison with PC Comparison with SP
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Conclusion

A(P,G0) = ⊤ and UA(P) = ⊤ ⇒ Algorithm s.t. A(P,G(P)) = ⊤ is consistent

Generative assumptions

Consistency conditions for algorithm Output conditions for algorithm

Algorithm s.t. A(P,G(P)) = ⊤ is consistent

By considering A and UA

SMR is the ’best’ amongst minimality
Exact conditions for PC

Sub A as:
1 Adjacency faithfulness
2 V-OUS + collider-stable

Me-LoNS algorithm (weak consistency conditions)


